Basic Forms of PVC

Basic Forms of PVC

Polyvinyl Chloride is widely available in two broad categories: Flexible and Rigid. But there are more types like CPVC, PVC-O and PVC-M.

Plasticized or Flexible PVC (Density: 1.1-1.35 g/cm3): Flexible PVC is formed by the addition of compatible plasticizers to PVC which lower the crystallinity. These plasticizers act like lubricants resulting in a much clearer and flexible plastic. This type of PVC is sometimes called as PVC-P.

Unplasticized or Rigid PVC (Density: 1.3-1.45 g/cm3): Rigid PVC is a stiff and cost-effective plastic with high resistance to impact, water, weather, chemicals and corrosive environments. This type of PVC is also known as UPVC, PVC-U or uPVC.

Chlorinated Polyvinyl Chloride or perchlorovinyl: It is prepared by chlorination of PVC resin. High chlorine content imparts high durability, chemical stability and flame retardancy. CPVC can withstand a wider range of temperatures.

Molecular Oriented PVC or PVC-O: It is formed by reorganizing the amorphous structure of PVC-U into a layered structured. Bi-axially oriented PVC has enhanced physical characteristics (stiffness, fatigue resistance, lightweight, etc.).

Modified PVC or PVC-M: It is an alloy of PVC formed by addition of modifying agents, resulting in enhanced toughness and impact properties.

Key Facts About Rigid and Flexible PVC

Rigid PVC

  • Strength:
  • Low cost & high stiffness
  • Intrinsic flame retardant
  • FDA compliant & also suitable for transparent applications
  • Better chemical resistance than plasticized PVC
  • Good electrical insulation & vapor barrier properties
  • Good dimensional stability at room temperature
  • Limitations:
  • Difficult to melt process
  • Limited solvent stress cracking resistance
  • Becomes brittle at 5°C (when not modified with impact modifiers and/or processing aids)
  • Low continuous service temperature of 50°C

Flexible PVC

  • Strength:
  • Low cost, flexible & high impact strength
  • Good resistance to UV, acids, alkalis, oils and many corrosive inorganic chemicals
  • Good electrical insulation properties
  • Non-flammable & versatile performance profile
  • Easier to process than rigid PVC
  • Limitations:
  • Properties can change with time, due to plasticizer migration
  • Attacked by ketones; some grades swollen or attacked by chlorinated and aromatic
  • hydrocarbons, esters, some aromatic ethers and amines, and nitro- compounds
  • Tends to degrade at high temperatures
  • Non-suitable for food contact with some plasticizers
  • Lower chemical resistance than rigid PVC
Share:
Leave comment